Millä todennäköisyydellä umpimähkään valittu tasasivuisen kolmion sisällä oleva piste on lähempänä kolmion painopistettä kuin mitään kolmion sivuista?
Tämän pulman esitti Colin Beveridge Twitterissä. Pulma on hieman hankalampi kuin miltä se päälle päin näyttää, mutta se on ratkaistavissa ihan lukiotiedoilla.
Ratkaisu:
Yleisyydestä luopumatta voimme sijoittaa kolmion yhden kärjen origoon ja asettaa sivun pituudeksi
yksikön. Tällöin painopisteen
koordinaatit ovat
. Paraabeli on määritelmänsä mukaan niiden pisteiden joukko, jotka ovat yhtä etäällä annetusta pisteestä ja annetusta suorasta. Näin ollen kysyttyä aluetta rajaa kolme paraabelin kaarta, eli se jää pisteiden
,
ja
väliin. Symmetrian nojalla voidaan rajoittua kolmioon
. Tämän jälkeen tehtävä ratkeaa geometristä todennäköisyyttä soveltamalla.
Kolmion
ala on
. Kolmioiden
ja
alat saadaan yhdenmuotoisuutta soveltamalla: Olkoon
pystysuora. Nyt tasasivuisen kolmion puolikkaana kulmana kulma
, jolloin kulma
. Tästä seuraa, että
. Koska paraabelin määritelmän nojalla
, niin
, jolloin kolmioiden
ja
yhdenmuotoisuuden vuoksi saadaan kolmion
alaksi
. Symmetrian nojalla tämä on myös kolmion
ala.
Pisteiden
ja
kautta kulkevan paraabelin yhtälön selvittämiseksi huomataan ensin, että paraabelin huipun koordinaattien on oltava
. Tästä saadaan paraabelille ns. huippumuotoinen yhtälö
![]()
Nyt, edellisen mittakaavatarkastelun perusteella saadaan paraabelin pisteelle
koordinaatit
. Yllä olevan yhtälöön sijoittamalla saadaan, että
. Pisteiden
,
,
ja
välinen ala saadaan määrättynä integraalina
![Rendered by QuickLaTeX.com \[A_{EFGH}=\int_{\frac{1}{3}}^{\frac{2}{3}} \left(\sqrt{3}\left(x-\frac{1}{2}\right)^2+\frac{\sqrt{3}}{12}\right)dx=\frac{5}{54\sqrt{3}}.\]](https://www.opettajah.fi/wp-content/ql-cache/quicklatex.com-22d13220cc06a67c90e684df193bc745_l3.png)
Nyt siis kysytty todennäköisyys on
![Rendered by QuickLaTeX.com \[\frac{A_{ABD}-A_{AGE}-A_{EFGH}-A_{BHF}}{A_{ABD}}=\frac{\frac{\sqrt{3}}{12}-\frac{\sqrt{3}}{54}-\frac{5}{54\sqrt{3}}-\frac{\sqrt{3}}{54}}{\frac{\sqrt{3}}{12}}=\frac{5}{27}.\]](https://www.opettajah.fi/wp-content/ql-cache/quicklatex.com-eea62c67a2ca7772f472cc09b2d53025_l3.png)
Muokattu 31.3.2016: Lukijamme Kössi huomasi, että painopisteen
-koordinaatti oli kaksinkertainen oikeaan painopisteeseen verrattuna. Se on nyt korjattu oikeaksi, eli kolmion painopiste todella on
. Lisäksi Kössi toivoi selvennystä siihen, miksi pisteet
ja
jakavat kannan
suhteessa
. Toivoakseni tämä muokattu ratkaisu vastaa nyt tuohonkin kysymykseen paremmin. Tarkempaa tehtävän analysointia ja vaihtoehtoisia ratkaisutapoja löytyy osoitteesta http://math.stackexchange.com/questions/1688936/what-is-the-probability-that-a-point-chosen-randomly-from-inside-an-equilateral.
keskenään käyttäen apuna niiden etäisyyttä lähimmästä kymmenen potenssista. Kaksinumeroisilla luvuilla laskettaessa käytetään referenssilukuna sataa, kolminumeroisilla tuhatta ja niin edelleen. Otetaan esimerkiksi tulo