0

Suunnikkaat solmussa

suunnikaspulma Suunnikkaan ABCD kärki B on suunnikkaan AEFG sivulla EF ja suunnikkaan AEFG kärki G on suunnikkaan ABCD sivulla CD. Suunnikkaan ABCD ala on 20. Laske suunnikkaan AEFG ala.


Ratkaisu: suunnikaspulmaratkaisuTutkitaan kolmiota ABG. Sillä on sama kanta ja korkeus kuin suunnikkalla ABCD, joten sen ala on puolet suunnikkaan alasta. Mutta toisaalta kolmiolla on sama kanta ja korkeus kuin suunnikkaalla AEFG, joten sen ala on puolet myös siitä. Näin ollen suunnikkailla on pakko olla sama ala.

0

Hullun loogikon vangit

Petri ja Eemil joutuivat hullun loogikon vangeiksi. Heidät suljettaisiin tuota pikaa selleihin, ja kummallekin annettaisiin ainoastaan virheetön kolikko. Heidän molempien pitäisi heittää tunnin ajan kerran minuutissa kolikkoa, siis yhteensä 60 kertaa. Kunkin heiton jälkeen he joutuisivat veikkamaan, saiko toinen herroista kruunan vai klaavan. Ja jos edes kerran molemmat olisivat yhtä aikaa oikeassa veikkauksessaan, hullu loogikko tappaisi heidät molemmat!

Ennen lopullista selleihin lukitsemista Petri ja Eemil saisivat keskustella keskenään vielä kymmenen minuutin ajan, mutta selleihin päädyttyään heillä ei olisi minkäänlaisia mahdollisuuksia kommunikoida keskenään. Oman kolikkonsa he toki näkisivät.

Viikon vaikea pulma on yrittää pelastaa Petrin ja Eemilin henki.

Kuva: Tom Blackwell/Flickr (CC BY-NC 2.0)

Kuva: Tom Blackwell/Flickr (CC BY-NC 2.0)


Ratkaisu: Petri ja Eemil voivat pelastua hyvin yksinkertaisella tempulla. Jos Petri veikkaa Eemilille aina samaa tulosta kuin oma heittonsa ja Eemil puolestaan vastakkaista Petrille, saavat he jokaisella heittokerralla täsmälleen yhden oikean arvauksen. Mahdollisia tapauksia on vain neljä, ja ne ovat tässä:

  1. Petri saa kruunan, veikkaa kruunaa. Eemil saa kruunan, veikkaa klaavaa. Petri on oikeassa, Eemil väärässä.
  2. Petri saa kruunan, veikkaa kruunaa. Eemil saa klaavan, veikkaa kruunaa. Petri on väärässä, Eemil oikeassa.
  3. Petri saa klaavan, veikkaa klavaa. Eemil saa kruunan, veikkaa klaavaa. Petri on väärässä, Eemil oikeassa.
  4. Petri saa klaavan, veikkaa klaavaa. Eemil saa klaavan, veikkaa kruunaa. Petri on oikeassa, Eemil väärässä.

Tämä pulma oli Alex Bellosin Monday Puzzle -palstalta The Guardianista.

0

Sinisilmäiset tytöt

Kun vastaasi tulee kaksi Sinisalon sisarusta, on todennäköisyys sille, että molemmilla on siniset silmät, täsmälleen 50 prosenttia. Montako sisarusta Sinisalon perheessä todennäköisimmin on?

Kyllä vain, Martin Gardnerin klassisia pulmiahan tämä ilmiselvästi on.


Ratkaisu: Jos Sinisalon perheessä on t tyttöä, joista sinisilmäisiä on s kappaletta, on todennäköisyys kahdelle sattumanvaraiselle sinisilmälle \displaystyle\frac{s(s-1)}{t(t-1)}. Tyttöjä on todennäköisimmin 4, joista sinisilmäisiä on 3, sillä seuraavat yhtälön \displaystyle\frac{s(s-1)}{t(t-1)}=\frac{1}{2} toteuttavat kokonaisluvut ovat t=21 ja s=15.

0

Katkaistu keppi

Keppi katkaistaan sattumanvaraisesta kohdasta. Viikon helppo pulma on, kuinka suuri osa koko kepistä lyhyempi pala keskimäärin on. Tämän ratkaistuasi voit siirtyä viikon vaikeaan pulmaan: mikä on kepin lyhyemmän ja pidemmän osan pituuksien keskimääräinen suhde?


Ratkaisu: Sattumanvarainen katkaiseminen tarkoittaa sitä, että kepin jokainen kohta on yhtä todennäköinen katkeamiskohta. Katkeamiskohta on yhtä todennäköisesti kepin puolivälin vasemmalla ja oikealla puolella. Se katkeaa keskimäärin tämän puolikkaan keskeltä, joten sen keskimääräinen pituus on \frac{1}{4} koko kepin pituudesta.

Tutkitaan sitten osien pituuksien suhdetta. Yleisyydestä poikkeamatta voidaan olettaa kepin pituudeksi 1 yksikkö. Olkoon  katkeamiskohta kepin loppupäässä ja olkoon pidemmän palan pituus x. Lyhyempi pala on nyt siis 1-x ja näin ollen kysytyksi suhteeksi saadaan

    \[2\int_{\frac{1}{2}}^1\frac{1-x}{x} dx=2\ln 2-1\approx 0,386.\]

Tämä pulma oli Frederick Mostellerin kirjasta Fifty Challenging Problems in Probability.

0

Ykkösiä, ei neliöitä

Osoita, ettei yksikään jonon 11, 111, 1111, 11111,\ldots jäsen ole kokonaisluvun neliö.


Ratkaisu: Jonon 11, 111, 1111, 11111,\ldots jokainen luku voidaan kirjoittaa muodossa 100m+11=4(25m+2)+3, jossa m on kokonaisluku. Näin ollen aina, kun jotain jonon luvuista jaetaan 4:llä, jakojäännökseksi jää 3.

Parilliset kokonaisluvut voidaan esittää muodossa 2n, jossa n on kokonaisluku. Näin ollen parillisten kokonaislukujen neliöt voidaan esittää muodossa (2n)^2=4n^2, eli parillisten lukujen neliöitä 4:llä jaettaessa jako menee aina tasan. Vastaavasti parittomat luvut voidaan esittää muodossa (2n+1), jolloin niiden neliöt voidaan esittää muodossa 4n^2+4n+1. Parittomien lukujen neliöitä 4:llä jaettaessa jakojäännös on siis aina 1. Siis mikään jonon  11, 111, 1111, 11111,\ldots luvuista ei voi olla kokonaisluvun neliö.

Tämä pulma on Stanfordin yliopiston matematiikkakilpailusta vuodelta 1949.